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method for dilute metallic alloys 
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Abstract. Some analytical aspects of the linear muffin-tin orbitals (LMO) method for metals 
and alloys are considered here, which are directly related to the accuracy of the numerical 
program giving the self-consistent electronic structure of dilute impurities. It is fint shown 
that the existenceof mathematicalsingularitiesatspecialenergieswithinthevalence energy 
range in the MO formalism induces no diswntinuityin physicalquantities such as the local 
density of states or the total displaced charge versus energy. Then, the numerical effects of 
the use of more than one energy panel for the valence states in the pure matrix and in the 
dilute alloy are compared, and we discuss the existence of a limit to the intrinsic accuracy of 
an impurityprogram for agiven matrixoftypex, byconsideringa fictitiousalloy D. Finally 
we give, as an example, our results for dilute AI alloys, which, in contrast to a recent 
publication, are very close to those obtained by the Green function method. 

1. Introduction 

Ab inirio self-consistent calculations of the electronic structure of metals and alloys 
provide a realistic description of the charge and magnetic moment distributions, without 
any adjustable parameters. This type of calculation has been developed over the last 
decade within the Green function theory initiated by Korringa, Kohn and Rostoker 
(KKR) (see e.g. [l, 2]), and the perturbation on the neighbours of the impurity is now 
currently included in the self-consistent process [3]. We have shown [4-6] that com- 
parable results can be obtained within the linear muffin-tin orbitals (LWO) method, 
which avoids the tedious calculations inherent in the KKR method. 

The fundamental approximation leading from the KKR to the LMTO formalism is the 
neglect of the kinetic energy?[* = E - V,, of the electrons outside the atomic spheres. 
The successive steps of this theory have been extensively developed in the literature 
[5,7]. For ordered compounds, energy-independent Bloch functions are then con- 
structed from ‘muffin-tin’ orbitals of logarithmic derivative D = - i - 1 at the atomic 
radius S, centred on each atom of the different sublattices; for dilute alloys, the LMTO 
formalism is directly obtained from the multiple scattering theory by setting X equal to 
zero. In both cases, metals or alloys, approximate wavefunctions of logarithmic deriva- 
tive D are constructed by linear combination of exact solutions Q)&) of Schrodinger’s 
equation and their energy derivatives @&), with the help of a Laurent series expansion 
of 1/(D - D],). The aim of the present work is to discuss the numerical implications 
of these different approximations and to analyse their consequences on the intrinsic 
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accuracy of the electronic structure programs for pure metals as well as for dilute 
impurities. In order to simplify the notation as much as possible, we limit the discussion 
to the case of an isolated impurity in a monatomic metal within the single-site approxi- 
mation, the extension of the conclusions to less localized defects being straightforward. 

This paper is organized as follows. In section 2, the scattering of electrons by an 
isolated atom of Wigner-Seitz radius S is considered in the limit X - 0  outside the 
atomic sphere. For each value of the orbital momentum l ,  three energies E:, E,* and 
E: are defined, which will play a special part in the following. 

In section 3 the LMTO method for pure metals is considered, and two points are 
discussed: (1) the numerical accuracy of the linearization of the ‘muffin-tin’ orbitals, 
especially above E?, related to the number of energy panels used to describe the 
conductionstates; (2) the necessityof using the tetrahedron method for the computation 
of the number of occupied states for each symmetry (this point is important for the 
impurity case). 

Section 4 is devoted to the LMIY) theory for dilute alloys. It is shown that, although 
the limit X - 0 introduces analytical discontinuities at the special energies in the LMTO 
expressions of some functions that are continuous in the KKR theory (such as the 
scattering r-matrix), this induces no discontinuity in the physical quantities such as the 
total displaced charge or the partial densities of states. 

Finally, we discuss in section 5 the intrinsic accuracy of the different steps of the 
LMTO program for dilute impurities. The additional numerical difficulty presented by 
the computation of the total number of occupied states for each symmetry in a non- 
periodic alloy is especially stressed by considering fictitious impurities X diluted in a 
metal of the same chemical species: &X. A few examples of magnetic or non-magnetic 
impurities in aluminium are given in order to show that, contrary to a recently published 
work [8], our results are always close to those of the KKR theory. 

2. Special energies E! ,  E? and E: 

The fundamental parameter of these methods is the logarithmic derivative of the radial 
wavefunction pl,(E, r )  at the surface of the atomic sphere (r  = S): 

It is a monotonically decreasing function of the energy between successive vertical 
asymptotes at energies E$ such that q l ( E $ ,  S) = 0. The index i of successive branches 
of D,(E) indicates the number of nodes of the wavefunction between 0 and S, in a similar 
fashion as the principal quantum number R of an isolated atom. In the energy range of 
the valence states, one or two branches Dil(E) can play a part, depending on whether 
the Fermi level EF lies below or above the nearest E!. In the following, we shall omit 
whenever possible the branch index i of the valence states. 

In the KKR formalism an isolated spherical atomic potential is described by a scat- 
tering r-matrix element: 

where vi(%) is the phase shift of the waves for symmetry 1. It is well known that its value 
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at zero kinetic energy is proportional to the number Nu of bound states of I symmetry 
(per spin) in the atomic potential: 

(1lnW + l ) r l I ( O )  = N u .  (3) 
The LMTO limit has to be performed without modifying the energy inside the atomic 
sphere. It is obtained by an artificial increase of the potential outside the sphere, from 
its constant value Vmz up to the energy E. Therefore, in this limit, one has to consider 
an energy-dependent LMTO potential for each isolated atom: this potential is identical 
to the atomic potential in the atomicsphere, but is different for each energy outside this 
sphere. The main consequence of this is that, for E greater than an energy Ef such that 
D l ( E f )  = - I - 1 in the valence branch, the corresponding LMW potential allows a 
supplementary bound state at ET,  of wavefunction q r ( E f ,  r )  for r < S, with a tail 
proportional to r-I-l outside the sphere. Following the notation of [7], let us call xL(r) 
this orbital, centred on the atom and defined in the whole space. Then, equation (3), 
which is valid for an atomic potential, has to be replaced by 

(1/~)(21+ l)q,(O) = N o  + (21 + 1)@(E - Ef ) (4) 
where 0 is the Heaviside function. 

isobtained by considering the LMTO limit of tL'(7C) [4]: 
Up to now, we have defined the special energies E: and Ef . The last special energy 

P,(E) = 2(21+ l)[D,(E) + 1 + l]j[D,(E) - r ] .  (5) 
This function is singular at an energy E: such that D,(E:) = 1. This singularity cor- 
responds in the KKR formalism to a zero scattering matrix element, hence to a phase shift 
multiple of n. The cross section is then also zero, which corresponds to a transparency 
of the potential for that energ) and symmetry. 

It must be noted that the special part played in the LMTO theory by ET and E: is a 
mathematical artefact of the limit 7 C - t  0 in the KKR formalism. No singularity of the 
physical quantities is expected at these energies. 

3. Periodic matrix 

For periodic compounds, the Bloch functions ,yi(r), where L = (I, m), are built from 
linear combinations of 'muffin-tin' orbitals of logarithmic derivatives -1- 1 at S, which 
are the orbitals xL of energy Er described in section 2:  

xi(.) = x e * . ~ " ~ ~ ( r - ~ " ) .  
R" 

This leads to a very simple formulation of the matrix elements of the Hamiltonian, 
and the total wavefunction in the crystal for each band j :  

is given by a simple diagonalization 

For r < S ,  the 'muffin-tin' orbitals r) of logarithmic derivative -1- 1 are 



3762 C Koenig and P Jund 

Tablel.Specialenergies[or pure& (Ryd). EF = -0.1 143 Ryd,EB = -0.8211 Ryd(bottom 
of the band). The energies marked > or < are well outside the valence panel. 

4s > -0.428 -0.821 
4P > 0.541 -0.843 
3d -0.228 -0.312 < 
4d > > 0.180 

obtained, like any orbital of energy Eand logarithmic derivative D, from the normalized 
numerical solution &(r) of the Schrodinger equation at an arbitrarily faed energy .& 
by the linear combination: 

&(E(D,). r )  = q I u ( r )  + 6 ( D d @ & )  (7) 

which has to be normalized when necessary. D, is deduced from the Laurent series: 

The validity of expression (7) bas been extensively discussed by Andersen [7]. It is 
correct to third order in energy provided that is chosen in a region of negative 
logarithmic derivative 4, i.e. in the vicinity of E f  . But its use in intermediate zones 
between two branches i and i + 1 just above @, characterized by a high positive value 
of D,, may induce non-negligible numerical errors. In these regions a Taylor series 
truncated to third order 

&(E,  r) = q1.W + ( E -  G U ) @ d r )  + W-J%)’M-) +&(E-  &m)36,u(r)  (9) 
which is normalized, is safer. Such an intermediate zone occurs for example in Cu just 
above the 3d ‘band‘, between & and E, (table 1 and figure l), so that this metal will be 
a good test for the accuracy of the programs. 

In a one-panel calculation, where each symmetry I is described with one I?tv chosen 
intherangeof negative b,,theeigenenergies E: obtainedfrom(6) have alargespectrum, 
which often contains intermediate zones for some symmetries. However, the weights 
ICbjz of these symmetries, which can be deduced from the eigenvectors Ai i ,  are in fact 
very small in these zones, the main part of the band of 1 symmetry being located in the 
region of negative D,, i.e. in the vicinity of ET. Therefore, the partial densities of state 
per atom: 

ii ,(E) = 2 IC“,l’ 6 ( E -  E!) 
ik 

are generally very good in the energy regions where they are high, and very small in the 
regions where the method itself is not very accurate. A calculation with three panels for 
Cu, replacing (7) by a Taylor series (9) for the 4d states in the upper panel ( E  > E $ ) ,  
gives a nearly identical result as the one-panel calculation (figure 1). For most of the 
ordered compounds, except for those presenting semi-core states [9 ] ,  the use of more 
than one panel for the occupied valence states is generally not justified. 
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Figure 1. Densities of states fors (a), p (b) ,  d,* (c) and d,. (d) symmetries for pure Cu: 
(----) one-panel calculations; (-) three panels. 

Enew(Ry) 

In the calculation of the radial density of valence electrons: 

in which an integral has to be performed from the bottom E, of the valence states to the 
Fermi level, the Taylor series (9) for &[(E, r )  is preferable to the LMTO expression (7), 
since it is also valid above E:. Then (10) can be separated into different terms depending 
upon the successive moments of EL@). The important point for the rest of this paper is 
that the first of these moments, i.e. the number of occupied states up to the energy E on 
the considered site (located at the origin 0): 

N i ( E )  = P i L @ ' )  dE' 

is calculated, together with &(E), by a tetrahedron method [lo]; P L ( E )  is simply 
proportional to the occupied volume below E in the Brillouin zone, so that the integral 
(11) has never to be performed numerically. 

This numerical integration has to be avoided, owing to the rough behaviour of&(E). 
Table 2 shows the value of #"(EF) calculated by (11) for Cu, versus the number of k- 
points in the irreducible wedge of the Brillouin zone and the energy scale, with a Fermi 
level fixed by the condition that @'(EF) calculated by the tetrahedron method is equal 
to (11). If (11) is substituted for the tetrahedron calculation in the self-consistent 
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Table 2. Number of occupied states for Cu given by integral (11) versus the number of k- 
points and the energy scale. 

Numberof 
k-points %1 1638 2030 96 1 2030 
AE(Ryd) 0.001 0.001 0.001 O.oM)5 0.0005 
hlfl(EF) 10.9117 ll.Mx)6 10.994 11.003 11.002 

Table 3. Test on Cu: number of electrons per atom, symmetry and spin for the pure matrix 
with one (1) or five (5 )  panels for the radial charge, and for a Cu impurity treated with five 
panels, 

Number of 
electrons slspin p/spin d/spin N",, 

%(I) 0.3481 0.3719 4.7800 11.oooO 
G(5) 0.3479 0.3718 4.7803 11.oooO 

- Cu(l)Cu(5) 0.3482 0.3721 4.7809 ll.0025 
&(S)Cu(S) 0.3476 03711 4 7781 10.9938 

Tabled Sameastable3, butforFe 

Number01 
electrons Spin +pin p/spin d/spin N", MO,, 

E ( 1 )  1 0.3277 0.4268 2.1428 8.0000 2,2053 

Fe(% L 0.3277 0.4265 21433 2,2050 

- Fe(l)Fe(S) 1 0.3292 0.4307 2.1812 2,1450 

- Fe(5)Fe(5) I 0.3271 0.4253 2.1246 79923 2,2382 

t 0.3158 0.3737 4.4131 

t 0.3158 0.3735 4.4132 

t 0.3170 0.3761 4.3928 

t 0.3154 0.3727 4.4271 

procedure, one obtains generally weak variations from one iteration to the next in the 
numerical integration of the high peaks of the densities of states, leading to small 
variationsof N L ( E )  and hence to a small deterioration of the quality of the convergence. 

Finally, a question can be raised on the validity of a Taylor development of $,(E,  r )  
aroundonesingleE,,in (10),since the wavefunction isnot smallfar from Therefore, 
two self-consistent calculationsfor pure Cu and pure magneticFe have been performed: 
in both calculations one panel is used to compute &(E); then (IO) is calculated with one 
panel for the first calculation and with five panels in the second one. The self-consistent 
numbers of electrons are given in tables 3 and 4; the discrepancies between the,two 
calculations are less than 0.001 electron. 
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4. Dilute alloys 

The electronic density on the impurity site and the total number of displaced states in 
the alloy are given by the Green function G of the alloy, which is related to the Green 
function G of the pure matrix by a Dyson equation. The simplest formulation of this 
equation is the one given by Hams [ll]. Let Ytl(r) be the real wavefunction of energy 
E on the site n,  proportional to X{jl(Xr) cot[q@)] - nr(SCr)} for r D S, and GS the 
Green function for an isolated atom; then 

G(r+ R",r' +R"') = 2 YL(?)Gp(r, r')YE(f')6nn2 
L 

+ Y,(i)Ytf(r)(G$. - tls,,s,.)Yt?.'(r')Yt.(?') (12) 
LL' 

where the imaginary part of GScancels the one of 
The structural Green function Cy;. (E) is then given by 

in the multiple scatteringterm [ll]. 

In the single perturbed site approximation, the total number of displaced electrons up 
to E in the whole crystal is 

N ~ ( E )  - R ~ ( E )  = - (I/z) Im In[l + GYL(1/t/ - I/;)] (14) 

where we have dropped the site index n = 0 for f and 
Im In t,, (14) can also be written as 

N ~ ' ( E )  - R p t ( ~ )  = (~/z){q/(X) - ~ ~ ( 3 1 )  - Im h[(t/ /T,)(l  + GTL(l/tr - I/$)]}. 

By noting that qXX) = argt, = 

(15) 

This last expression is directly obtained in the formulation of Podloucky er a1 [12], which 
we have used earlier [5].  

We have already detailed in [SI how to get in a systematic way the LMTO expressions 
of these quantities. The LWO limit of Ytf(r) is 1/(Pr)@f(E, r ) ,  where @?(E, r) is the 
normalized wavefunction of energy E in the nth sphere of the alloy, and 

P?(E) = aPr(E) /aE = zp+ i)*[-hjy~j]/[oy(.~) - q2. (16) 

The LMTO limit of G$, is the Green function r$, which is related to the function 
5%. defined in [5] by 

ry;, = J$. + ( i / ~ y ) a ~ ~ ~ 6 ~ ~  

and satisfies a simpler Dyson equation 

L""" 

Thenumericalcalculationof p&e (or&',) hasbeendetailedin[S].Forcubicsymmetries 
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and 1 s 2, the intra-site elements are diagonal when expressed in cubic harmonics, and 
are given by 

C Koenig and P Jund 

i;w LL - - (1/li,)[fL(€) + P,/P, - I/(E - .E;)] - iniiL(E)/B(q (18) 

wheref,+(E) is the Hilbert transform of&(E). In the single-site approximation, the total 
number of displaced electrons in the crystal for the symmetry L is then (per spin) 

~ ~~ ~ ~~~~~ 

N ~ ' ( E )  - @(E)  = - (I/YG) Im In[l + F%(P, - t',)] (19) 

= ( ~ / z ) ~ I ~ ( o )  - ~ ' ( (0 )  - Im 1n[(P, /pN + @dp, - P , ) ) ] }  (20) 
whicharetherwolimitsof (14)and(15),andwhereagainthesiteindexn =Ohasbeen 
dropped for P, and PI. 

If the contribution (NcL - &) of the core states of the impurity and the matrix is 
isolated and the phase shifts set to zero at the bottom of the valence band: 

(l/n)[q,(O) - V,(O)] = @ ( E  - Ef) - @(E - Ef) (21) 
then (19) and (20) give the contribution of the valence states to the total displaced 
charge, including the one of the artificial bound states at energies Ef and l?? in the 
isolated LMTO potentials, and generalized phase shifts AL(E) for the valence states can 
bedefinedby 

Np' (E)  - @ ( E )  = (l/z)AL(E). (22) 
The total displaced charge is a continuous variable of E in the KKR formalism. Its 

LMTO expression must also be continuous, despite the singularities of Pi at D, = l and 
Pi '  at Dl = - 1  - 1. 

It is easy to verify that (19) has no singularity at Ef or @. In (20) the same 
compensation occurs as in (15): in the vicinity of Ef , P,(E) can be written as 

P@) = +@?)(E + iE - Ef) 
E beinga small positive imaginary part. When E becomesgreater than Ef , the argument 
of P,(E) is reduced by n whereas a new artificial bound state appears in the LMTO 
potential. Hence, at E = ET , the discontinuity of Im In PI cancels exactly the one of 
q,(O) given by (21). The same cancellation occurs at E ? .  

In the vicinity of I?, = I, the divergence of PI is compensated by a zero of T in (19) 
and (20). For D, = 1, (20) has no singularity but (19) diverges as well as (13), which is in 
fact only valid for r l (E)  # 0. As was said before, ET is an energy for which the defect is 
transparent and the scattering formalism has to be reconsidered from the beginning. 
The generalized phase shift &(E) defined in (22) can also be obtained by 

which does not display any singularity at E: or E:.  This phase shift is a continuous 
function of E in the whole range of energies, so that any numerical discontinuity of (U) 
has to be corrected. 

-~ 
AL(E)  = - Atan{(PI - t',) ImFpL/[l + (P, -Pi) Re f'yL]} (23) 

It is finally easy to verify that the local density on the impurity 

n , ( E )  = - (l/lr)P,(E) Im ryL(E) = (P,/F,)iL(E)/{[1 + (PI - PI) Re pyL]* 
~~ + [(P, - P , ) ~ m T p ~ ] ~ j =  C U ~ ( E ) ~ ' ~ ( E )  (24) 

has no singularity at the special energies. 
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5. Numerical aspects and examples 

The radial density of electrons on the impurity site is obtained from 

and then the atomic potential is recalculated in the same way as for the matrix, allowing 
a new iteration to start. However, the calculation for impurities presents two numerical 
difficulties compared to a band-structure calculation of a pure matrix. 

5.1. Accuracy of the calculation of Pl(E) and Pl(E) 

The density of states on the impurity (24) depends upon these two functions for the 
matrix and impurity potentials in the whole range of the valence band. These quantities 
are large in the intermediate regions between two branches of Dl(E),  where the Laurent 
series (8) for bI(E), or its equivalent for DXE), is not precise. Therefore, the calculation 
of (5 )  and (15) from (8) may not be very accurate in these intermediate regions. It is then 
preferable to use a Taylor series to third order of type (9) for q+(E) and for @; (E) in the 
two expressions: 

f‘i(E) = W + 1)[s@; ( E ,  + (1 + 1 ) @ 1 @ ,  s)I/P@; ( E ,  s) - W I @ ,  s)l 
Pl(E) = 2[(21+ l)*/sI/[s@; ( E ,  s) - [@r(E, 91’. 

(26) 

(27) 
For the matrix, an additional local expansion around I?;’ has to be considered in the 
vicinity of this energy in order to get correct numerical compensation of the two last 
terms in the brackets in equation (18). 

Figure 2 compares to their exact values the two functions Pf(E)  and PLE) for Cu, 
calculated by both methods with one or five energy panels. The necessity for several 
panels is now evident: as the regions of high nL(E) may be very different from those of 
high i L ( E )  (for example in the case of a resonance), precise values of Pf(E) and PXE) 
are needed in (24) for the matrix and the impurity in the whole range of the valence 
states. The LMTO calculation of PI@) is slightly better than the third-order calculation 
in the regions where D, is negative, as expected. But the values of Pf(E) calculated by 
(27) are everywhere better than what is obtained from (8) and (16), and particularly in 
the intermediate zone above E$. 

5.2. Accuracy of the calculation of nJE) and pL(r): test opt G C u  and &Fe 

A very precise test of the numerical accuracy of the program is to perform a self- 
consistent calculation of the electronic structure of an ‘impurity’ of type X in a matrix of 
the same type. Our previous tests on AI, FeAl and ferromagnetic Fe [5] display small 
numerical differences between the ‘impurity’ and the equivalent atom in the matrix, 
which we attributed to the lack of ‘combined corrections’ beyond the atomic sphere 
approximation in the impurity cell. This argument, which has recently been put forward 
again by Singh [SI, is in fact not correct. The effect of the combined corrections is 
containedin thenumericalvaluesofiL(E) andis transmittedto the impurityviaequation 
(24). By considering (24), (10) and (25), it can be seen thal, if the initial potential on the 
impurity is identical to the matrix potential, the densities of states and the charge 
distributions should also be identical. Then the self-consistency on the impurity should 
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Figure 2. Difference between the calculated functions Pd(E) (----) and Pd(E) (-) 
for pure Cu and their exact numerical values. (0) One panel and MO formulae (5) .  (8) and 
(16). (b) One panel and third-order Taylor series in (26) and (7.7). (c) Same as ((I) with five 
panels. ( d )  Same as (b) with five panels. 

lead tonodifference in the results, provided that the matrixcalculation iswell converged. 
The small numerical differences observed on the fictitious 'impurities' are in fact only 
due to a slight numerical inaccuracy of the impurity program, which is almost impossible 
to avoid. We want here to emphasize this point with the examples of @Cu and &Fe. 

In (25) the wavefunction iscalculated by aTaylor series to third order. The successive 
momentsof the densityofstatesn,(E) arecalculatedineachpanel from the local number 
of electrons on the impurity site: 

E 
q ( E )  = I n,(E') dE' 

EB 

which is the equivalent of (11). However, the alloy is not a periodic system, so that the 
only way to compute f$(E) is to perform the integration (28) numerically. It is then 
evident that even at the first iteration it will be different from P, (E)  so that the charge 
density pL(r) will also be slightly different from p,(E),  even if the same panels are used 
for its calculation in the matrix and on the impurity. In tables 3 and 4, the only source of 
numericaldiscrepancies betweenCu(5) andG(5) or Fe(5) andFe(5) at the first iteration 
is the numerical integration of the impurity density of states. This induces a slight 
difference between P@) and p,(xE) in the next iteration, and both effects are cumulated 
during the self-consistent process. 
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Tsble5.ImpuritiesinAl. No = totalIumberofvalenceelectronsin theimpuritycell:W= 
local magnetic moment; N,o, = 2 - N c  + (I/,%) ZLo A;(&); X = impurity of type X with- 
out screening rule (29); X(+) = with screening rule (29); X’ = non-magnetic X impurity. 
(u)Ourresults(~~~0);(b)Deutreral[2](~~~);(~)Singh[8](~~~0). 

3.MX1003 3 

11.236 11.065 
11.156 11 

8.203 8.400 
7.858 8 

7.181 7.548 
6.705 7 
7.135 7.434 
6.792 7 

0 

0 
0 

1.828 
2.464 

0 
0 
2.b15 
3.190 

cu 11.26 11.00 0 

Fe* 8.31 8.39 0 
Fe 8.31 8.39 1.78 

Mn’ 7.27 7.52 0 
Mn 7.27 7.51 2.53 

(4 No N,, MO 

0 AI 3.005 - 
cu 11.273 11.078 0 

Fe * 8,279 8.402 0 

Mn* 7.232 -2.492 0 

CN+) 11.103 10.888 0 

Fe*(+) 7.895 8.000 0 

Mn*(+) 7.899 2.062 0 

In order to put the two calculations on the same footing, one could also calculate 
(11) numerically for the matrix, but this induces a loss of precision in the convergence 
for the pure matrix and hence does not improve the final result on the ‘impurity’. A more 
elegant way to circumvent this difficulty is to make use of the complex-energy technique 
[13]: far from the real axis the Green function is smooth and its numerical integration 
easy. This technique has been used in [5] for the impurity but not for the matrix. 

Tables 3.4 and 5 give an estimate of the intrinsic accuracy of the impurity program, 
which varies from one case to the other. The difference in the number of conduction 
electrons in the ‘impurity’ cell and in the matrix is of about 0.000003 electron for AI, 
which is a very easy case. The precision is of about 0.005 electron for Cu, and drops 
down to 0.02 electron and 0.04 pB for Fe. All the results presented below have been 
obtained from a one-panel calculation for the pure matrix and a five-panel calculation 
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Figure 3. (a) Coefficient #'(E) for the four cubic symmetries in pure Cu: ( y -  -) s states; 
(-) p states: (-) d12 states (. . . .) &. states, (b)  Real part of rpL(E) for d lz  
(-) and dw (. . . .). Its imaginary part is approximately proportional to the opposite 
of &(E) given in figures l(c) and (4. 

for PL(E), $,(E) and all the impurity program, with a Taylor series to third order for 
the wavefunctions in (lo), (25), (26) and (27). 

Figure 3 displays the self-consistent values of the coefficients aL(E) defined in (24) 
for G C u ,  which should ideally be equal to 1. They are without any singularity at the 
special energies (table 1) and their structures reflect those of @'(E) as can be seen for 
the symmetries d,, and dzs., on figures 1 and 3. One can deduce from these curves that 
the discrepancy between the integrals p L ( E )  and Ni(E) is not constant through the 
valence band. Some compensation occurs above the 3d band, giving a good result at EF. 
It is then obvious that for &Fe the numerical inaccuracy of (28) is more crucial, owing 
to the fact that the 3d bands for the two spins are not equally tilled. 

It must be noted that what we call here the intrinsic accuracy of the impurityprogram, 
i.e. its capacity to reproduce for the X 'impurity' the exact electronic structure of the X 
atoms of the matrix, is essentially limited by the numerical integration (28). This limi- 
tation is not specific to the LMTO theory but exists as well in the KKR formalism. 

5.3. Examples 
There are two ways to perform the self-consistent calculation for dilute alloys, either by 
constraining the defect to ensure the Friedel screening rule 

(a being the spin index), or without this constraint. In the fust case the global neutrality 
of the crystal is ensured automatically, but this leads sometimes to too strong a local 
perturbation in the one-site approximation, where the impurity alone contributes to 
(29). In the second case the local perturbation may be weaker, but the crystal may not 
be neutral, which is also unphysical. This discrepancy vanishes when the first shells of 
neighbours of the impurity are included in the self-consistent calculation [14]. 

We give here some examples of the application of the LMTO method to dilute 
aluminium alloys, with and without the constraint (29). These calculations have been 
performed in the single-site approximation, the aim of this work being only to compare 
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our results (table 5(a)) to other calculations performed within the same hypothesis: 
those of Deutz el a l [2]  within the KKR formalism (table 5(b))  and those of Singh [SI by 
the LMTO method (table 5(c)). 

Considering the small differences between our calculations and those of [Z], such as 
(i) Von Barth-Hedin exchange-correlation potential instead of Moruzzi's one [15] and 
(ii) atomic sphere approximation instead of muffin-tin spheres, we can conclude that 
our LMTO results agree well with those of the KKR formalism in any case. The curious 
results obtained by Sin& for the total displaced charge (i.e. for the values of &(EF)) 
for Cu when enforcing the Friedel screening rule, and especially for Mn and Cr 
impurities, are certainly due neither to an intrinsic failure of the LMTO formalism nor to 
the single-site approximation. 

6. Conelusion 

We have in this paper analysed some aspects of the LMTO method applied to pure metals 
and dilute alloys. Our main conclusions are the following. 

(i) The LMTO limit introduces singularities at special energies on functions that are 
regular in the KKR formalism. But this leads to no singularity in the calculated physical 
quantities, so that the results are always comparable to those of the KKR theory. 

(ii) The differences between the matrix and the self-consistent impurity in the tests 
on fictitious alloys g are not due to the lack of combined corrections in the impurity 
cell, but simply reflect the unavoidable difference in the numerical calculations of the 
number of electrons in the matrix and in the impurity cell. These tests give the order of 
magnitude of the intrinsic accuracy of these calculations. 

(iii) Finally, we have presented evidence why the classical LMTO method with one 
panel for the conduction states is a very good method for the calculation of the electronic 
structure of pure metals, while the use of several panels and a Taylor series to third order 
for the wavefunction can be necessary for dilute alloys. 
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